rtd test
Release 0.0.1

Michael Blass

Apr 22, 2021

CONTENTS

1 Installation 3
1.1 Installation from PyPi L 3
1.2 Installation from source e e e e e e e e e e e e 3
2 Basic usage 5
3 Track sytem 7
3.1 PitchTrack e e e e e 7
3.2 RhythmTrack e e e e e e e 7
3.3 TimbreTrack e e e e e 7
3.4 FormTrack e e e 7
4 Open source 9
Index 11

rtd test, Release 0.0.1

The Computational Music and Sound Archiving system provides high-level audio feature extraction facilities for
multi-viewpoint music similarity analysis.

Music similarity is hard to analyse. A viewpoint highlights certain aspects of musical perception. Asking for similarity
regarding pitch requires another viewpoint than asking for rhythm similarity.

COMSAR combines pre-selected low-level audio features to Track objects, which represent a viewpoint.

CONTENTS 1

rtd test, Release 0.0.1

2 CONTENTS

CHAPTER
ONE

INSTALLATION

1.1 Installation from PyPi

comsar is available on PyPi. Simply run the following command in your favorite terminal emulator:

’pip install comsar

1.2 Installation from source

Installation from source is done in two steps:

* If you do not have git installed, simply navigate to the source code repository, click on the green “Code” button
and then select “Download ZIP”. Otherwise, clone the source code with git:

git clone https://github.com/ifsm/comsar

* Once the code is downloaded, change to the comsar root directory and advise Python to install the pacakge:

cd path/to/comsar
python3 -m pip install .

rtd test, Release 0.0.1

4 Chapter 1. Installation

CHAPTER
TWO

BASIC USAGE

In order to compute audio features regarding a certain track, you just have to create an instance of your desired track
object and then call its ext ract () method with the path to an audio file. Considre the following example:

from comsar.tracks import TimbreTrack

tt = TimbreTrack ()
res = tt.extract ('path/to/my_audio.wav')
res.to_pickle ('my_ features.pkl'")

The first line imports the desired Track object, in this case a TimbreTrack. The third line creates a TimbreTrack
instance with the name tt. The fourth line calls the ext ract method of tt and passes it the path to an actual
audio file. comsar then processes the audio file and makes the results available under the name res. The fifths line
eventually saves the results to disc.

rtd test, Release 0.0.1

6 Chapter 2. Basic usage

CHAPTER
THREE

3.1 PitchTrack
3.2 RhythmTrack
3.3 TimbreTrack

class rtd.xxx.MySuperClass (herb)

3.4 FormTrack

Implementation of the FormTrack is planed.

TRACK SYTEM

rtd test, Release 0.0.1

8 Chapter 3. Track sytem

CHAPTER
FOUR

OPEN SOURCE

comsar is an open source project. It is published under the permissive BSD 3-Clause License. You may change and
republish the code for any personal or commercial project. The comsar source code is available on GitHub.

https://opensource.org/licenses/BSD-3-Clause
https://github.com/ifsm/comsar

rtd test, Release 0.0.1

10 Chapter 4. Open source

INDEX

M

MySuperClass (class in rtd.xxx), 7

11

	Installation
	Installation from PyPi
	Installation from source

	Basic usage
	Track sytem
	PitchTrack
	RhythmTrack
	TimbreTrack
	FormTrack

	Open source
	Index

